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INTRODUCTION

Millions of Americans, including a large percentage of active military personnel and veterans, are affected by
three major blinding diseases of the retina and optic nerve: diabetic retinopathy, age-related macular
degeneration, and glaucoma. These diseases typically affect the elderly, but a significant number of young
people also fall victim. As a result of current advances in surgical and pharmacologic therapeutics, vision loss
due to all these diseases can be halted or even reversed if the disease is detected early. New advanced detection
methods are available, but are only interpretable by very experienced specialists. The goal of this research is to
advance the frontiers of a promising imaging technology called optical coherence tomography (OCT),
developing advanced instrumentation and new software applications to enable high resolution evaluations of the
retina and optic nerve that could be easily performed by non-physician health care professionals. In addition to
on-site use, such techniques could be further applied for telemedicine transmittal of images (from the battlefield
or other remote sites) for further evaluation by specialist ophthalmologists. The hypothesis to be tested is that
advancements in OCT technology will enhance military and nonmilitary ocular health capabilities. The three
specific research objectives are as follows: 1) Develop methods for accurate vertical alignment and matching,
including the overlay of a color or red-free, fundus photograph on an OCT image for registration. 2) Develop
the mathematical algorithms to analyze and quantify OCT datasets automatically. 3) Further improve the
resolution of the spectral OCT, correlate images with pathology, and develop algorithms for 3-D visualization
of datasets.

BODY

Task 1. Development of algorithms for quantitative evaluation of retinal pathology and for monitoring
disease progression and response to treatment.

a. Develop 3D segmentation algorithm for quantitative mapping of the retinal thickness using current 3D OCT
data for normal and diseased human eyes.

The development of high-speed spectral-domain OCT systems allows for the introduction of new imaging
modalities, including the acquisition of three-dimensional datasets. Detailed information about the retinal
structure over large areas is encoded in these 3-D datasets. A crucial challenge to exploiting the full potential of
retinal OCT imaging is the ability of extracting reliable, quantitative information from the scans. Our efforts
towards providing an answer to this question are an important component of the research supported by the
grant. In particular we developed, implemented and validated 3D segmentation algorithms to map the retinal
geometry from the OCT datasets. One of the main products of the segmentation is the measurement of retinal
thickness. Such measurements provide the framework for the quantitative evaluation of retinal pathology.
Multimodal registration between OCT fundus reconstructions and other en face retinal images (i.e. fundus
photography, fluorescein angiography, fundus autofluorescence) gives us the tools to map the precise retinal site
corresponding to each image pixel and track a specific location over time (across successive datasets). This
provides an unprecedented ability for monitoring disease progression and response to treatment. This type of
information could prove very valuable to the physician in formulating clinical decision as well as for improving
the understanding of pathological processes.

The first step involved developing image processing software to perform tasks such as feature recognition and
edge segmentation. There are several issues that make segmentation of OCT images very difficult in general.
Some of the main complications that one needs to overcome are the presence of speckle noise, the relative low
contrast and signal to noise ratio in a OCT image compared to x-ray CT and MRI imaging, and the large
variability of retinal features’ appearance, especially in the presence of pathology. The difficulty in extracting
quantitative information from OCT images is well illustrated by the problems with the commercial OCT
instrument (StratusOCT, Carl Zeiss), whose retinal thickness analysis has been shown to generate a large
number of artifacts. An additional problem in 3D spectral-domain OCT imaging is the very big size of the
datasets. The very large number of A-scans to be analyzed (>40000) greatly restricts the acceptable rate of
failure of the algorithms to be used, before errors become clearly evident. Also the computational power/time
needs of potential algorithms need to be taken into careful consideration.
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The algorithms developed by our group allow us to reconstruct the three dimensional geometry of the patient’s
retina. In particular we can visualize the geometry of the internal limiting membrane (ILM) and the retinal
pigment epithelium (RPE) as surfaces in a three dimensional space. In Fig. 1, we show this construct for the
retina of a patient suffering from non-exudative age-related macular degeneration (AMD). Retinal thickness
maps, i.e. the distances between ILM and RPE, can be then computed and visualized. The retinal thickness
maps we can generate from SD-OCT images are vastly more detailed, accurate, and reproducible than those
available with StratusOCT or any other current imaging technology.

Spectral-domain OCTs can generate 3D datasets
covering large retinal areas.

A typical scan consists of a raster of equally spaced
B-scans covering a square region.

OCT fundus reconstruction. It allows scan
registration as well as quality assessment.

Segmentation algorithms can be used to
reconstruct the retinal geometry and
create thickness maps.

s ILM '

} Total Retinal Thickness

Retinal Thickness Map

Fig. 1 Our analysis of OCT datasets.

The algorithms we developed are based on an iterative architecture, where an initial guess is successively
evaluated and improved upon, according to a set of principles that may be tailored to the specific structure to be
analyzed and/or the particulars of the disease model of interest. The general design of the algorithms is
described in the following flowchart (Fig. 2).

We will assume here that we are dealing with an OCT dataset acquired using a raster scan consisting of d4 X dy

x dy data points, where d is the A-scan size, dy is the number of scans in each B-scans, and dy is the number of

B-scans in the raster scan. The OCT dataset is then a d4 X dy x dy dimensional array A(i,j,k), where the pixel
5



indexes are equivalent to a system of 3-dimensional Euclidean orthogonal coordinates. The main output consists
of two dy x dy arrays representing the ILM and the RPE positions, i.e. the ILM(j,k) entry is an integer giving the
pixel number in the A-scan A(.,j,k) corresponding to the ILM leading edge.

Input Dataset

A

Smoothing Filter

Initialize I=1

Initialize the
Segmentation on each
A-scan

4

Define a set S of local

and global conditions
to evaluate the
segmentation

1= 1+1 Output Segmentation

Select Regions where

Adjust Segmentation | the Segmentation is
on the bad Regions |~ substandard according
to S(I)

Fig. 2. Basic Structure of the Algorithm.

The first step consists of some preprocessing the OCT data, whose main purpose is to reduce the amount of
speckle noise and then computing some basic statistical characteristics of the remaining noise process. Also
some signal-level normalization is achieved.

At this point a quick analysis of each A-scan is carried out to produce an initial estimate for the ILM and RPE
arrays. While it would of course be desirable to achieve the correct segmentation already at this stage, our
approach only requires that this initial estimate be “mostly correct”. This is actually the main assumption behind
the design of the algorithm: if at least a sizable percentage on the boundaries can be quickly estimated in a
correct manner (and if we can recognize this correct region), then we can focus our computational resources
effectively on the “bad regions” to improve the result.

An iteration loop is therefore set up where the algorithm repeatedly improves the segmentation results by
selecting “bad regions” where the current segmentation is “suspect” and analyzing these bad regions more
carefully. The process stops when either there are no bad regions left or the algorithm has traversed a preset
maximal number of loops. The routines which decompose a given segmentation in good and bad regions, and
the routines that analyze and correct the segmentation on the bad regions, are the computational core of the
algorithm. They strive to encode a series of hypotheses as well as a fair amount of empirical knowledge on the
anatomy and geometry of the retina. The concentration of this knowledge into a suitable set of mathematical
conditions which do a good job of discriminating problematic areas in the segmentation, and work well across a
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very wide spectrum of retinal conditions, is the crucial task to be achieved. We believe our choices can be
shown to perform quite successfully.

Fig. 3. Segmentation result for a human retina with RPE detachment. Left: 3D view of the
segmented ILM and RPE; Center: 3D view of the segmented RPE; Right: the calculated retinal
thickness map.

We have focused so far on tools that describe the ILM and the RPE, i.e. the inner and outer boundaries of the
retina. However, these algorithms could be generalized to provide quantitative information about the damage to
different biological layers caused by the diseases, like for instance the nerve fiber layer (NFL), the ganglion cell
layer (GCL), or the photoreceptors. The ability to accurately measure such retinal structures would likely
further our understanding of the progression of various retinal diseases.

b. Develop 3D registration algorithm for monitoring disease progression and response to treatment using
current 3D OCT data.

Multimodal and intra-modal retinal image registration is important to clinical diagnosis and treatment.
Currently, there are several types of retinal imaging modalities, including OCT, fluorescein angiogram, fundus
autofluorescence imaging, and color fundus photography. Different types of imaging reveal different
characteristics the retina by using different contrast mechanisms, which provide complimentary localized
information of the retina. At the same time, retinal images taken at different time can reveal the progression and
the response to treatment of retinal diseases. We have developed an effective algorithm to register the various
types of fundus images: OCT fundus images taken at different times and OCT fundus images to color fundus
photograph of the same eye.

Registration methods usually consist of several steps [1-3]: feature detection; transform model estimation;
optimization function design; and optimization strategies. We do not choose intensity-based feature for
multimodal image registration because even for intra-modal retinal images, intensity can change due to changes
in imaging parameters. For retinal image registration, blood vessel patterns [4,5] can be taken as a relatively
stable feature. Some papers use the vascular landmarks [6,7], like bifurcations and crossovers [8]. However, for
low quality images or images with disease, it is not easy to detect bifurcations and crossovers.

Here, we use blood vessel ridges as a specific feature [9]. Defined as points where the image has an extremum
in the direction of the largest surface curvature [10], ridges are a natural feature of blood vessels and are usually
approximately center lines of blood vessels. By using ridges we can avoid the problem of determining the whole
blood vessel area, which not only saves computation time but also avoids the potential bad effect of imprecisely
detected vessel area on registration.

Among different transformation models, like translation, affine, and quadratic models [5, 6], affine
transformation is relatively simple while generating acceptable results:

a, a, 0
(x’ Y 1):(x y 1)a, ay, 0 (D

a, ay 1



where, the point (x, y) in one image will be transformed to (x',y') in the other image by the affine
a, a, 0

transformation matrix | a,, a,, 0], which includes the combination of translation, rotation, shearing and
ay ay 1

scaling. In the transformation matrix, a,, and a,, are translation parameters, a,,, a,,, a,, and a,, are

parameters related to shear, rotation and scale. We use the affine transformation model in our retinal image
registration algorithm.

Optimization function is to evaluate the similarity between a pair of images. For intensity based matching [1],
correlation, mutual information, and Fourier transformation can be used as an optimization function. For
registration with points as features [7, 5], distance is a good similarity measurement. In literature there are a lot
of similarity functions [11-13] to compute distance between points.

After the optimization function is chosen, we need to choose a proper optimization strategy [2]. Here, we focus
on optimization strategies using points as features, since our algorithm uses vessel ridges as features. Ref. 6
used a hierarchy of models, a random sampling search technique and iteratively-reweighted least-squares to
estimate the quadratic transformation. A dual-bootstrap iterative closest point algorithm is used in Ref. 7.
Usually initialization does not yield points suitable for global optimization except for some local area, so it is
not necessary to match all the points. Since the alignment in the small initial region is reasonably accurate, it
helps to expand registration area gradually. Ref. 5 used brute force search to get translation estimation, then
estimated the affine or quadratic transformations by iterative closes point algorithm. The test fundus images are
at a similar scale.

Our algorithm adopts vessel ridges as features. For different fundus images, they have different resolutions.
According to the resolution parameters, we rescale fundus vessel ridge images to a similar scale. Brute force
search is first used to estimate the translation parameters and scale parameter. Then the translation and scale
estimation with the largest similarity is taken as the initialization of the iterative closes point algorithm (ICP) to
get a more accurate transform. Experiments show that affine transform works well.

Three steps were taken in the registration algorithm:
Step 1: Vessel ridges are detected for different fundus images.

Step 2: Brute force search is used to estimate the translation parameters and scale parameter. For different types
of fundus images, rescale parameter and the size of the matching area are estimated as input parameters.

Step 3: With the estimation of translation and scale parameters, the iterative closest point algorithm (ICP) is
used to find a more exact affine transform.

Fig. 4 test registration result for OCT fundus image vs OCT fundus image. The images were
taken separately in the same day for a patient. a) base image. (b) test image. (c) the
registration of detected blood vessel ridges for the two images. (d) registered test image.

shows the registration result for an OCT fundus image vs. OCT fundus image. The OCT images were acquired

with Carl Zeiss’ Cirus separately in the same day. Fig. 5 shows the test result for another patient imaged at
different dates. Fig. 6 shows the comparison of registration algorithms based on intensity with that based on
blood vessel ridges. We can see that the feature of vessel ridges is more stable than that of intensity. We used
Image] software in Ref. 14 to register the two examples for comparison because our registration algorithm can
not be applied to intensity based registration. Fig. 7 shows the test result fro registration of the OCT fundus
image on the color fundus photo.



(b) Test image
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(c) The registration of detected blood (d) Registration result.
vessel ridges for the two images.

Fig. 4 test registration result for OCT fundus image vs OCT fundus image. The images were
taken separately in the same day for a patient. a) base image. (b) test image. (c) the
registration of detected blood vessel ridges for the two images. (d) registered test image.
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(c) The registration of detected blood (d) Registration result.
vessel ridges for the two images.

Fig. 5 test registration result for OCT fundus image vs OCT fundus image. The images were
taken at different dates.
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(b) The base image is under the registered
test image based on intensity by ImagelJ
software. We can see clearly the deviation
of corresponding vessels.

(¢) The base image is under the registered
test image based on vessel ridges by
Imagel] software.

Fig. 6 Comparison of registration algorithms based on intensity with that based on blood
vessel ridges. We can see that the feature of vessel ridges is more stable than that of intensity.
We used Imagel software in Ref. 14 to register the two examples for comparison because our
registration algorithm can not be applied to intensity based registration.
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(a) The registration result. The OCT fundus image is (b) The registration of detected blood
superimposed on the color fundus image. vessel ridges for the two images.

Fig. 7 test registration result for OCT fundus image vs color fundus photo.

c. Test the accuracy of the segmentation algorithm by comparing the segmentation results done by the
algorithm and by experts, respectively.

The performance of a segmentation algorithm like the one described here can be judged in terms of two
important measures: accuracy and reproducibility. These characteristics are not necessarily related and are both
important for clinical applications. Also algorithms’ performance should be evaluated on the full range of
pathologies presented in the patient population. The accuracy of any new algorithm has to be tested by
comparing the retinal boundaries generated by the algorithm with boundaries manually generated by an expert,
e.g. a clinician or a pathologist who is familiar with OCT image interpretation. This information can be used to
evaluate the performance of the algorithms, as well as to quantify further improvements. Testing the
reproducibility involves scanning a given set of eyes repeatedly. Because it is often difficult to image exactly
the same retinal area every time, the ability to perform image registration becomes an important component of
assessing the reproducibility of measurements in the context of spectral domain OCT.

For the analysis of the segmentation algorithm’s performance we focused on raster scans covering a 6x6x2 mm
volume and acquiring either 200x200 A-scans equally spaced on the retina or 512x128 A-scans covering the
same region. Automated segmentation of the internal limiting membrane (ILM) and anterior retinal pigment
epithelium (RPE) boundaries generates surfaces in 3-D space and retinal thickness maps.

132 eyes from patients imaged at Bascom Palmer were randomly selected representing the full range of retinal
diseases. Also included were 12 eyes of normal volunteers. For each eye a SD-OCT dataset was entered in the
study. The OCT datasets were divided amongst three retina specialist, who traced manually the ILM and RPE
boundaries a number of predetermined B-scans. These manually drawn boundaries were then compared
pointwise with the results of the automated segmentation.

The statistical distributions of the differences (pixelwise) between the manual and automated segmentations are
described separately for ILM and RPE, for both normal eyes and eyes with disease. In addition to these error
probability distributions, we defined a threshold for registration failure. A computer generated boundary was
considered a failure if its distance from the corresponding “true edge” was above 20 pixels at least 10% of the
time. Of course any such failure criteria are somewhat arbitrary, nevertheless we believe it come close to
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capturing a clinical judgment about the usefulness/appropriateness of a given segmentation result. Two
particular examples of algorithm failure are shown in Fig. 8.

COMPUTER GENERATED

BOUNDARIES
n"""‘ -\

Fig. 8 Two B-scans showing failures of the RPE segmentation. Failures can be fairly subtle (example on
the left) in the example on the right, or sometime substantial.

Normal subjects are of course the simplest case. The anatomical concepts are very clear, image quality tends to
be good, and segmentation in this case is relatively easy. The segmentation algorithm did not fail on a set of 36
B-scans from 12 eyes. The difference probability distributions, shown below in Fig. 9, are very tight with means
close to zero. The standard deviation is somewhat higher for the RPE than for the ILM, reflecting the fact that
identifying the ILM boundary is in general a more straightforward task.

0.1

018 || probability distributions |
016 \ ] of the difference B i
1 “ | between manual and ‘I\
oo | | automated 008 [
: | segmentation \

1 0.06 ‘ |

| 0.04
| ] |

| I 002 JI |
0.02 ‘ | 4 x*-axis: distance in pixels. r |
{ A positive distance correspond to the l
manual boundaries above the computer . . : — . .
tod P oo 80 60 40 20 0 20 40 60 80 100
generaled one. RPE: n=36, mean=1034, sd=4.080

0 . L L Lo - . .
00 80 -60 40 -20 0 20 40 60 8D 100
ILM: n=36, mean=-1.270, sd=2.772

Fig. 9 Accuracy results for normal eyes.

Our sample of patients’ eyes is meant to be representative of what is typically imaged at the Bascom Palmer
retinal clinic. These are randomly chosen eyes presenting a full range of pathologies. No special provision was
made to eliminate scans with less than optimal image quality. The idea was to obtain results which would
evaluate the performance of the algorithm in a setting similar to what clinicians would actually see in a busy
tertiary care center. While the presence of pathology clearly affects the performance of automated segmentation,
the probability distributions remained quite narrow in all cases.
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Fig. 10 Accuracy results for eyes with disease.

The variance of distribution of differences is larger by a factor roughly equal to three. The segmentation of the
RPE shows a tendency to be slightly biased towards positive errors (i.e. the automated segmentation is more
often below the manually drawn curve). On both scan patterns the ILM segmentation failed on ~ 5% of the B-
scans, while the RPE failed on ~ 15% of the B-scans. It is important to keep in mind that it is often difficult to
identify retinal structures (in particular the “RPE”) in the presence of pathologies (as a matter of fact it is often
misleading to even use the word RPE to describe what is really an outer retinal edge. In many cases the actual
RPE can be compromised and/or missing). Even the retinal experts could not sometime agree to a “right”
position for the outer retinal edge. Therefore the results shown in Fig. 10 are quite encouraging.

The reproducibility of the retinal thickness measurements is estimated by computing the standard deviation,
both pointwise and averaged over regions, of registered thickness maps. Variations in OCT measurements are in
general due to several factors. Datasets acquired with the new SD-OCT instruments can in principle be
registered using the OCT fundus images, therefore minimizing the component of variation due to eye
movements as well as scan aiming/patient fixation problems.
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What corresponds to what?

Fig. 11 Registration of OCT images can be needed to analyze reproducibility: the left eye of a patient
was imaged three times over two months. Clearly the scans do not overlap exactly.

Reproducibility is excellent in normal subjects. In this case the retinal thickness changes continuously and the
thickness maps can be registered in an effective manner. We see in Fig. 12 a typical example where five
separate OCT datasets of a normal eye were acquired and compared after registration. The pointwise standard
deviation map shows that at most pixels the standard deviation of the five thickness measurements is well below
Sum (and always below 8um). The average standard deviation is 2.52 pum.
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5 separate scans of the same normal eye

500 pm 25 um

400 20

300 15

200 10

100 5

0 0
Pointwise average Retina thickness map Pointwise standard deviation map

Average pointwise s¢=2.52 ym

Fig. 12 Reproducibility for a normal eye.

3 separate scans of an eye with dry AMD

500 um 25 um
400 20
300 156
”
200 10
100 5
0 0
Pointwise average Retina thickness Peintwise standard deviation map
Average puinlwise sd=6.67 um Fig 9

Fig. 13 Reproducibility for an eye with AMD.
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In the presence of pathologies the reproducibility of thickness measurements might deteriorate somewhat. The
sharp, localized changes in thickness maps due to drusen, for instance, can increase the standard deviation as we
see in Fig. 13. This effect may be partly due to difficulties with the registration, which in this case is particularly
important and may not be as good as one would like. It should be noted that both the average thickness map and
the standard deviation map show some black area along the left and lower edges. These are the areas where the
three dataset fail to overlap. It might also be remarked that, while the pointwise standard deviation map show
small areas with relatively large standard deviation values, the qualitative look of the three thickness maps is
very close. For most clinical purposes average retinal thickness values over regions of interest might be the
relevant measurement. For instance physicians are familiar with the ETDRS grid which defines nine regions
bounded by three concentric circles (Fig. 10). When using the ETDRS grid to produce average retinal thickness
values, the scans in Fig. 9 show a very high degree of reproducibility.
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The 3D datasets generated by our SD-OCT instrument can be automatically analyzed with the segmentation
software we developed. This allows us to generate thickness maps consisting of 40000-70000 data points
distributed over a square region of the retina. This wealth of sample points creates images that can accurately
describe even small features.

The boundaries selected from the automated algorithm are generally in very good agreement point-wise with
the manually drawn boundaries. In particular on diseased eyes these lines are within 20um of each other on well
over 90% of pixels about 85% of the times. It should be kept in mind that many of these eyes were seriously
diseased, poor image quality was not an exclusion criteria, and different retinal specialists were often at odds on
where boundaries (especially the RPE) should be drawn. The standard deviation of the probability distribution
for the errors was below 10 um, when controlling for outliers.

The variance of the segmentation of different scans of the same eye was measured at every pixel after the
images were registered. This point-wise variance, as well as the mean variance, was typically well below 5 pm.

Task 2. Develop ultra-high resolution ophthalmic OCT system.

A high-speed high resolution 3D SD-OCT was built. A schematic of the experimental system for the
preliminary studies is shown in Fig. 15. In the SD-OCT system, the low-coherence light from a three-module
superluminescent diode (T-840 Broadlighter, Superlum Diodes Ltd. Moscow, Russia) with center wavelength
of 840 nm and FWHM bandwidth of 100 nm is coupled into an optical fiber-based Michelson interferometer. In
the sample arm, the sample light is delivered to the retina by a modified optical head of an OCT 2 system (Carl
Zeiss Meditec Inc., Dublin, CA). The power of the sample light was lowered to 750uW by adjusting the source
power to ensure that the light intensity delivered to the eye was within the ANSI standard. In the detection arm,
a spectrometer consisting of a collimating lens, a transmission grating (1200 line/mm), a multi-element imaging
lens (f = 180 mm), and a line scan CCD camera (Aviiva-SM2-CL-2014, 2048 pixels with 14 micron pixel size
17



operating in 12-bit mode) was used to detect the combined reference and sample light. The calculated spectral
resolution of the spectrometer was 0.055 nm, which corresponds to a detectable imaging depth range of 3.1 mm
in air. OCT scans consisting of a total number of 65536 depth scans (A-scans) takes 2.7 seconds. An image
acquisition board (NI IMAQ PCI 1428) acquired the image captured by the camera and transferred it to a
computer workstation (IBM IntelliStation Z Pro, dual 3.6 GHz processor, 3 GB memory) for signal processing
and image display. A complete raster scan consisting of 128 x 512 scanning steps took about 2.7 seconds when
the A-line rate of the OCT system was set to be 24 kHz. At this operating condition, the measured sensitivity
was about 95dB.
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Fig. 15. Schematic of the preliminary experimental system. SLD: superluminescent diode
(Broadlighter, Superlum Diodes Ltd, Moscow, Russia); PC: polarization controller. The
spectrometer consists of a =50 mm collimating lens, a 1200 line/mm transmission grating and a
=200 mm imaging lens. The CCD camera is a 2048 element linear array with 14 pm element size
(Aviiva-M2-CL-2014, Atmel, USA).

Calculation of the OCT signal

In spectral-domain OCT, the combined back-reflected sample and reference light in a Michelson interferometer
is detected by a spectrometer together with an array detector (usually a CCD camera). The following analyses
assume that a linear array detector is used whose elements are aligned in the direction along which the spectrum
is spread in the spectrometer. We also ignore the polarization effects in the interference between the reference
and sample light without losing the generality of the analysis. The signal detected by the array detector is called
a spectral-domain signal to distinguish it from the time-varying signal detected in a conventional time-domain
OCT. The light intensity incident on each element of the line scan camera is proportional to the spectral density
G, (v) of the combined reference and sample light, which can be expressed as

G, =G W +ZR,+2 3 R R, cosl2av(z, —7,)]+ 28R, cos2av(z, —7,)]}. 0

where vis the light frequency; R, is the normalized intensity reflection representing the contribution to the
collected sample light by the nth scatterer; G, (v) is the spectral density of the light source; the reflection of the
7, of the light

n? m

reference arm is assumed to be unity; distances are represented by propagation times 7

reflected by the nth and mth scatterers in the sample and 7, reflected by the reference mirror in the reference
arm and summation is across all axial depths in the sample beam.

The spectral-domain signal can be transformed to the time-domain by using the Wiener-Khinchin theorem ['*]:
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C(r)=<u(t)u*(t+7)>=FT'[G (V)] ()

where ['(7)is the autocorrelation function of the source light; u(¢) is the amplitude of the electric field of the

light; the angle brackets denote integration over time and FT~' denotes the inverse Fourier transform. By taking
an inverse Fourier transformation of Eq. (1), we obtain the time-domain intensity signal:

[(2)=T(2)+T(t)LR, +2 % R R, T[r £2(z, —7,)]+25 R, T[r £ 2(z, - 7,)], 3)

n+m

In Egs. (1) and (3), the third terms are the mutual interference for all light scattered within the sample expressed
in the frequency domain and the time domain, respectively, and the last terms contain the interference between
the scattered sample light and the reference light from which an OCT A-scan is calculated [16].

The discrete Fourier transformation that yields Eq. (3) requires even sampling inv . In a spectrometer, however,
the spectrum is evenly spread along the wavelength (here we do not consider the nonlinear terms, detailed
analysis of the wavelength distribution will be discussed in 0) and the acquired raw spectrum must be
interpolated to get the correct OCT signal.

Calculation of the OCT fundus image [/7]
The contrast in a SLO image is provided by the lateral distribution of Y R, across the retina. To construct a
fundus intensity image from the OCT data set we need to extract the intensity term > R, that is contained in

both the second and fourth terms of Egs. (1) and (3). There are multiple methods for extracting the intensity; the
method selected for a particular application will depend on desired speed and accuracy.

One method is to use the non-interference terms in the frequency domain to construct the intensity image. We
noticed that the cosine terms in Eq.(1) have many cycles across the spectrum and will sum to (approximately)
zero, leaving only the constant terms. As a result, when we sum Eq. (1) across v, we have

F.(x,y)=G, (1 +XR, j 4)

where F,(x,y) is the output of the processing method for an A-line at lateral scan point (x, y) on the fundus and
G 1is the total source power.

Another method to derive the fundus intensity is to use the fourth term of Eq. (1) by separating the oscillatory
component of Eq. (1) from the slow variation and recognizing that, for retina and other low reflectance samples,
the third term is small relative to the fourth term. One way to achieve this is first to remove the low frequency
component in Eq. (1) by high pass filtering the detected spectrum, then squaring the remaining oscillatory
component and summing over the spectrum. The result can be expressed as

F,(x,y)=X {22 \/EGS (v)cos[2mv(z, -, )]}2 = 4G, >R,, &)

where F ,(x,y) is the intensity calculated in the frequency domain, which can be displayed directly to produce
an intensity image. According to Parseval’s theorem, F,(x,y)=F,(x,y) where F,(x,y) is the intensity
calculated in time domain. F,(x,y) can be acquired from the calculated OCT signal in Eq. (3) by squaring and
summing the values at all axial positions except those near 7 =0. We have

F(x,y)=% {zg VRl 20, ~ 1) (6)

Wavelength distribution in the spectrometer

In a spectral-domain OCT system the accuracy of the wavelength distribution in the spectrometer can severely
affect the depth resolution of the system and the signal to noise ratio (SNR). Therefore, calibration of the
wavelength distribution in the spectrometer is one important step for achieving depth resolution close to the
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theoretical prediction [18]. Fig. 16 shows the simulation results on the effect of wavelength distribution error in
the spectrometer on the depth resolution in spectral-domain OCT. Two boundaries with different reflectivity
were simulated as the sample. Fig. 16a shows the situation when there is no error in the wavelength distribution.
Fig. 16b shows the situation when the nonlinear terms in the wavelength distribution exist but were omitted.
The resulted depth dependent resolution distortion can be clearly seen in the figure.
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Fig. 16. Simulation of the effect of error of wavelength distribution in the spectrometer on the depth
resolution in spectral-domain OCT. Two boundaries with different reflectivity were simulated as the
sample. (a): there is no error in the wavelength distribution; (b): the nonlinear terms in the wavelength
distribution exist but were omitted. We can see clearly the depth dependent resolution distortion in (b).
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The theoretical wavelength distribution in the spectrometer can be worked out using Fig. 17a. The grating
equation for the first order diffraction can be expressed as

A=dsin@, +dsin(0+0,), (7)

where 6; is the incident angle for the transmission grating; 6+ 6 is the diffraction angle for wavelength A; d is
spacing of the grooves of the grating. Assuming that the center wavelength of the light source falls on the center
pixel of the CCD camera the wavelength distribution on the CCD camera can be expressed as

A, dx/ 0. d sin 6,
=l & f cos 2 z/10+dicos9i—%(£)2 sin@i—%(i)%os@i

1 X2 1 X2 f f S/
\/Jr(f) \/+(f) ; (8)

=, +a,(x, -V, /2)—a,(x, -V, /2) —a,(x, -V, /2)’

where A is the center wavelength of the light source; x is the distance on the CCD imaging plane from the
center; fis focal length of the imaging lens; a, a,, and a3 are coefficients for the first order, second order, and
third order terms; x,; and V), are the pixel number and the maximal pixel number of the CCD camera, 0< x; < V.
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Fig. 17. (a) Illustration of the light diffraction in the spectrometer. 6; is the incident angle of the
incoming light. The configuration of the system meets the Littrow condition. @ is the diffraction angle
in reference to the center wavelength. (b) An example for the spectromerter calibration: the position
for each atomic line predicted by the theoretical model (*) was compared with the measured spectrum
of a Neon spectral lamp.

Fig. 17b shows one example of the spectrometer calibration using a Neon spectral calibration lamp (6032,
Newport Corporation), where the position of each atomic line predicted by the theoretical model (* in the
figure) was compared with the measured spectrum of the lamp. In this example the measured position of each
atomic line of the spectral lamp matched the theoretical model preferably. When errors occur, the coefficients
ai, a, and az need to be tuned.

To further eliminate any effect from the possible residual error in the wavelength distribution after calibration
with the spectral lamp a method reported in by C. Dorrer [18] will be employed. Namely we can use a mirror in
the sample arm and measure the spectral interferogram with different delays. By curve fitting on the phase
differences for different delay differences the non-linear term in the wavelength calibration error can be
extracted and then eliminated during signal processing for OCT imaging.

Dispersion compensation

Dispersion is caused by the dependence of the refractive index of the optical medium on the optical frequency.
In a dispersive optical medium light of different wavelengths travels at different speed. Dispersion mismatch
between the sample and reference arms in an interferometer causes distortions to the point spread function, then
the depth resolution, of the system. Dispersion between the two arms in an interferometer needs to be carefully
matched in the entire bandwidth of the broadband light source in order to achieve optimal depth resolution in an
ultra-high resolution OCT [19]. Dispersion in the sample arm in retinal OCT imaging is predominantly
attributed to the media in front of the retina including the ocular tissue and optical materials in the sample arm.
As a result, dispersion variation in the entire imaging range is negligible [20].

In spectral-domain OCT dispersion mismatch between the sample and reference arms can be compensated
during signal processing. The phase of the interferogram for each axial scan can be expressed as

D(w)=D, +c,(0—w,) +c,(0— 1) +cy(0-v,)’, 9)

where o, is the center angular frequency of the light source. The first order term (the second term) is the OCT

signal. The second and third order terms (the third and fourth terms) are caused by the second and third order
dispersion mismatch between the two arms. To compensate for the dispersion mismatch we can construct a
complex compensation phase function:

G, () = expl-icy (@~ ®,)* —ic\ (@~ ,)’]. (10)
After removing the DC terms in the detected interferogram expressed in Eq. (1) we multiply the signal with
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G, () and we have
G ()G, () = expl—ic, (@ - @,)" —ic (0 — 0,) RIAR, cosjo(z, —1,)+ ¢, (0 - 0,)" + ¢, (0—0,)
=y JR, explior, —1,) +i(c, )@ —,)* + (¢ =) Y@ —m,)*]

+ 2R, explioz, —7,)+i(c, + )@ —m,)> +(c; +¢3)o— @)

b

(11)

where we omitted the initial phase. When ¢, =c, andc, = c,, by taking the inverse Fourier transformation we
have

FTG,(@)G, (@)= FT" £ R, explio(z, - 7,)]|

. (12)
+FT' =R, exp[ia)(rn —17,)+2ic, (@ — @)’ +2i03(w—a)0)3]}

The first term in the expression is the dispersion free OCT signal while the second term is the mirror image in
which the dispersion is doubled. With this method the real image is compensated for the dispersion mismatch
while the mirror image is blurred, which has the additional advantage for discriminating the real image from its
mirror for the operator.

An iterative algorithm similar to the one used by M. Wojtkowski et al [20] for finding the correct coefficients
for ¢, =c, andc, =c, will be used. The task of the algorithm is to find the two coefficients that make the

energy in each axial scan the most concentrated, i.e. the image is the sharpest. The flowchart for the procedure
of dispersion compensation is shown in Fig. 18. In the procedure the last zero padding is to ensure that after the
inverse Fourier transformation the pixel spacing is smaller than half of the designed depth resolution. The
algorithm eliminated the process for calculating the phase of the signal thus avoided the possible unwrapping
error.

G | Background FT" and FTand Gelw)
remove_ll & flat—> zero padding > interpolation
correction

Initial value »|Generate the GC(‘*’)l é
for c2and ¢ phase function
OCT | Zero ]
Image padding

Fig. 18. Flow chart for the iterative dispersion compensation procedure. The iteration
continues until the OCT signal is the sharpest measured with the sharpness metric. Usually
the processes for finding the second and third order compensation coefficients are separated.
The last zero padding is to ensure that after the inverse Fourier transformation the pixel
spacing is smaller than half of the designed depth resolution.

As shown in Fig. 19, the calibrated depth resolution is 3.8 um in air and ~3um the tissue, which was corrected
with the refractive index of biological tissues (~1.4).
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Fig. 19. measured spectrum of the light source and the point-spread function of the ultra-high
resolution OCT.

Test the OCT system on normal human eye

The OCT system was tested on imaging normal human eye (the PI’s eye). Fig. 20 shows the OCT image of a
normal human retina. From the image we can see that all the sub-retinal layers can be seen clearly, which
demonstrated the resolving capability of the ultra-high resolution OCT system.

Fig. 20. OCT image of the normal human retina.

By adding switchable optics in the sample arm, the OCT system was capable of imaging both the anterior
segments and the retina of the eye. Fig. 21 shows the acquired images of the cornea and conjunctiva of a normal
eye with contact lenses. By adding artificial tears and after several blinks the OCT system can not only reveal
the pre-lens and post-lens tear films but also all the details of the anatomy of the cornea: the corneal epithelium,
basal cell layer, Bowman’s membrane, stroma, and endothelium.
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Fig. 21 OCT images of the anterior segment of the eye. (a) a magnified view of the cornea
with soft contact lens; (b) image of the conjunctiva with soft contact lens.

KEY RESEARCH ACCOMPLISHMENTS

= Developed methods for accurate vertical alignment and matching, including the overlay of a color or
red-free, fundus photograph on an OCT image for registration.

= Developed the mathematical algorithms to analyze and quantify OCT datasets automatically including
3D segmentation algorithm for quantitative mapping of the retinal thickness using 3D OCT data for
normal and diseased human eyes.

= Tested the accuracy of the segmentation algorithm by comparing the segmentation results done by the
algorithm and by experts, respectively.

= Further improved the resolution of the spectral OCT. The developed OCT system has a depth resolution
of ~3 um in tissue and is capable of resolving all the sub-retinal features of the retina.

REPORTABLE OUTCOMES

Journal article

1). H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, "Automatic retinal blood flow
calculation using spectral domain optical coherence tomography," Opt. Express 15, 15193-15206 (2007).
http://www.opticsinfobase.org/abstract.cfm?URI=0e-15-23-15193.
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1). S. Jiao, J. Wang, and C. A. Puliafito, “Contrast Enhancement for Imaging the Tears and Contact Lens with
Optical Coherence Tomography”, ARVO 2008.

2). H.M. Wehbe, M. Ruggeri, S. Jiao, C. Puliafito, “Quantitative Retinal Blood Flow Measurement and
Calibration Using Spectral Domain Optical Coherence Tomography”, ARVO 2008.

CONCLUSION

High resolution OCT images can reveal the detailed anatomical structures of both the anterior and posterior
segments of the eye. Ultra-high resolution SD-OCT provides a powerful tool for visualizing the 3D microscopic
structures of the eye in vivo. Incorporating with segmentation algorithms quantitative information like the 3D
geometry of the retina, retinal thickness map, and tear volume can be extracted from the measured OCT images,
which make possible more objective quantitative evaluation of eye diseases. It will also simplify and accelerate
diagnosis and monitoring of retinal disease by enabling prompt triage and therapy implementation by
optometrists and non-ophthalmologist physicians. The development of registration algorithms makes possible
more accurate evaluation of images taken at progressive intervals, which will better enable ophthalmologists to
follow the course of the disease and its treatment. Furthermore, improved resolution of SD-OCT will enable
telemedicine consultation on retinal disease for non-ophthalmologist health professionals, potentially preventing
vision loss and blindness. Next step of the study should be focused on optimization of the system hardware and
registration software to make it more stable and robust.
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Abstract: Optical Doppler tomography (ODT) is a branch of optical
coherence tomography (OCT) that can measure the speed of a blood flow
by measuring the Doppler shaft impinged on the probing sample light by the
moving blood cells. However, the measured speed of blood flow 15 a
function of the Doppler angle, which needs to be determined m order to
calculate the absolute velocity of the blood flow inside a wessel We
developed a techmque that can extract the Doppler angle from the 3D data
measurad with spectral-domain OCT, which needs to extract the lateral and
depth coordinates of a vessel in each measured ODT and OCT image. The
lateral coordinates and the diameter of a blood vessel were first extracted in
each OCT structural image by using the techmique of blood vessel
shadowgram, a technique first developed by us for enhancing the retinal
blood wvessel contrast in the en face view of the 3D OCT. The depth
coordmate of a vessel was then determuned by using a circular averaging
filter mowving in the depth direction along the axis passing through the
vessel center m the ODT mmage. The Doppler angle was then calculated
from the extracted coordinates of the blood wvessel The techmique was
applied in blood flow measurements in retinal blood vessels, which has
potential impact on the study and diagnosis of blinding diseases like
glaucoma.

©2007 Optical Society of America

OCIS codes: (110.4300) Optical coherence tomegraphy; (12038%0) medical optics
instrumentation; (170.4380) optical diagnosties for medicine.
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1. Introduction:

Glaucoma is one of the leading causes of blindness in the world and is usually associated with
mcreased intraocular pressure (IOP). There are two theories for the pathogenesis of
glaucomatous optic neuropathy (GON): the mechamical and the vascular theory, both of which
have been the debate subject of mmltiple research groups throughout the past 130 years. [1.2-
3] The wvascular theory considers GON to be the result of 1schemia caused by the elevated IOP
or other risk factors obstructing the blood flow. A tool providing accurate quantitative
structural and blood flow informartion will benefit the study of the etiology of glancoma as
well as the developments of new therapies by monistoring the treatment effects non-invasively.
Optical Doppler tomography (ODT) 1s a branch of optical coherence tomography (OCT) that
can measure the spatially resolved speed of a blood flow by measuring the Doppler shift
caused by the moving blood cells to the probing sample light. [4.5] The measured Doppler

shift ( f; ) 1s related to the velocity by:
2nv

= %RCOSH? (D

where v 1s the absolute velocity of the moving blood cells. A; 1s the center wavelength of

the light source. n 1s the refractive index of the sample and & is the Doppler angle. From the
above equation it 15 clear that the calculated velocity from the measured Doppler shuft 15 the
projection of the absolute velocity on the direction of the mcident probing light. Accordingly.
in order to calculate the absolute velocity from the measured Doppler shift we need to know
the Doppler angle #. However # is not only an unknown parameter in retinal ODT imaging
but also changes at different imaging time.

Spectral-domain optical coherence tomography (SD-OCT) 1s a recently developad high
speed OCT technology that provides high resolution three dimensional imaging of biological
tissues. SD-OCT provides the means of calculating the Doppler angle from the acqured 3D
data, which provides structural (3D orientations and the blood vessel diameters) and Doppler
mformation of the retinal blood vessels. [6] In this paper we report on our study on the
automatic extraction of the parameters of the retinal blood vessels from the images acquired
with a high resolution high speed SD-OCT. The retinal blood flow can be calculated upon
acquisition of these parameters together with the Doppler mformation.

2. Materials and methods
2.1 Ulira high resolution OCT system

A high-speed high resolution 3D SD-OCT was built for the mvestigation. In the SD-OCT
system, the low-coherence light from a three-module superluminescent diode (T-840
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Broadlighter, Superlum Diodes Ltd. Moscow, Russia) with center wavelength of 840 nm and
FWHM bandwidth of 100 nm 1s coupled into an optical fiber-based Michelson mterferometer.
In the sample arm, the sample light 15 deliverad to the retina by a modified optical head of an
OCT 2 system (Carl Zeiss Meditec Inc.. Dublin, CA). In the detection arm. a spectrometer
consisting of a collimating lens, a transmussion grating (1200 hne/mm). a multi-element
imaging lens (f = 180 mm). and a line scan CCD camera (Aviiva-SM2-CL-2014. 2048 pixels
with 14 micron pixel size operating i 12-bit mode) was used to detect the combined
reference and sample light. The calculated spectral resolution of the spectrometer was 0.053
nm, which corresponds to a detectable imaging depth range of 3.1 mm in air. The calibrated
depth resolution in the tissue is ~3pm. which was corrected with the refractive index of
biological tissues. The power of the sample light was lowered to 730uW by adjusting the
source power to ensure that the light intensity delivered to the eve was within the ANSI
standard. OCT scans consisting of a total number of 65336 depth scans (A-scans) takes 2.7
seconds.

2.2 Daoppler imaging

The measured raw spectral interference signals were processed by using the standard
algorithm for spectral domain OCT to get the complex signal [T7(1) ] in the time domain. To

calculate the Doppler shift we first calculated the product of the complex signals for the
adjacent A-lines:

T (D) o T, (f) = A(r)e' 0 00,0 o

where T [r) is the complex conjugate of T'(t); A is the amplitude of the product; @, 1s the
phase of T, (t): i is the A-line number. The phase difference among the adjacent A-
lines Ag; = @;,; —@, can then be calculated. Calculating the phase difference with Eq. (2) has
the advantage of avoiding the problem of phase unwrapping.

The projected flow speed on the direction of the incident sample light can be calculated
fromAg,

_ AP Ao Sy time
r ; :
. m » 3)
_Hﬂﬁi{ﬂ‘j <m. - ApS A line < Vp < Ay A_iine i
4n 4n

where v, 1s the projection of the absolute velocity v, along the depth direction. A, 1s the

center wavelength of the light source (840 nm), f,_j,. 1s the axial scan frequency (24000 A-
lines/sec), n 1s the index of refraction of the sample (—1.4). Accordingly, the maximal speed
that can be detected by our system without phase wrapping 15 £3_.6 mm/sec.

The Doppler image contains bulk motion artifacts that 1s additive to the Doppler shaft
mduced by the blood flow. Bulk motion effect can be quantified for each A-line by using the
histogram technique [7]. Briefly speaking. the histogram H [ﬂ.(nf] of the phase difference A,

was calculated along each mdividual line of the Doppler image. H f_ﬁ(ﬂi] contained N bins

A — AL
N

varying in the interval [— .fr_.!r] with a step size of Agy, = . where Ag@,.. and

Agp, . are the maxmmm and mmmmum of Ag,. respectively. The phase shift Ay, caused

by bulk motion was obtained by locating the peak of the histogram

ﬂ"%m’k = IIEK[H{QQ'}F ]] » - < H[J(ﬂ; }I = (4}
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A@, ;. 15 subtracted from its corresponding A, to compensate for the bulk motion artifact
for each line of the ODT image.

2.3 Scan patterns and eve movement compensation

The first scan pattern we used for the study 15 a set of evenly spaced concentric circles around
the optic disc of the eye. This scan pattern was chosen to cover all major retinal arteries and
wveins. This scan pattern was used to test the algorithms for blood wessel detection. As
1llustrated 1 Fig. 1{a), the circular scan pattern consisted of 36 normal density (1024) and one
high density (8192) depth scans (A-lines). The radius of the circles spanned evenly from 0.73
to 2.73mm on the fundus. The high density scan had a scan radius of 1.73mm, which is the
same as that used in the commercial time-domain OCT machine for glancoma mmaging [8]. A
donut shaped en face OCT fundus image [11] can be generated and registered on the
corresponding fundus photograph for the same eve. By comparing the OCT fundus image and
the fundus photograph arteries and veins can be recognized. An ODT image can be generated
from the high density scan. The ODT image helps not only verify the accuracy of the
calculation of the lateral coordinates of each recognizable blood vessel but also locate the

depth coordinate of each blood vessel on the high density OCT image.

Fig. 1. {a). Circular scan pattern centered on the optic disk. The black
circles represent the normal density scans (1024 A-lines); the white circle
represent the high density scan (2192 A-lines). (b)Arc scan pattern. Scans
1.2.3,62.63 are used to caleulate the Doppler angle. Scan 64 1s used for
alignment. Scans 4-61 were scanning the same area.

Another scan pattern we used 1s arc shaped [Fig. 1(b)] for imaging individual blood
vessels. The scan pattern consisted of 63 concentric arcs, each of which has 1024 A-lines,
subtending an angle of & /4 with a radius spanning from 148 to 1.98mm, and one depth
alignment scan (reference scan, scan No.64) for eye movement compensation. 38 scans (scan
No.4 to No.61) were repeated at a radius of 1.73 mm. This arrangement of the scans 1s used to
calculate the Doppler angle and the flow dynamics. A Doppler image was calculated for each
of the arc scans, therefore allowing accurate 3D coordinate calculations.

Also illustrated in Fig. 1(a) 1s the coordinate system we used for the entire study, where
the X-axis represents the horizontal position, the Y-axis represents the vertical position, and
the Z-axis represents the depth position. We also defined r (1. 48mm <7 =1.98mm ) as the
scan radius and & (0= o = 2x) as the scan angle, both can be pre-determined by the scan
data. For each pixel on the circular OCT image the lateral coordmnates (x. v) can be calculated
as x=rcos andy =rsing .
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Inveoluntary eve movements during image acquisition can cause distortions to the retinal
OCT images as well as the locations of retinal vessels due to limited imaging speed. which n
turn add an error to the Doppler angle calculation. The ultimate solution to this problem is to
mcrease the imaging speed. With current commercially available cameras for the
spectrometer, the space for mmproving mmaging speed 1s very lmuted. As a result,
compensation for the distortions caused by eve movements with post-processing 1s necessary.
To compensate for the eyve movements a linear fast reference scan crossing all the arc scans
was added at the end of the arc scan. During the fast linear scan eye movement can usually be
neglected, the linear scan provides a reference for all the arc scan images m the depth
direction. The depth position for each arc scan can be adjusted according to this reference
scan and thus provides compensation in the depth direction. Compensation according to the
reference scan image can be done in different ways. In one method we can detect the front
surface of all the images and each B-scan will be shifted in the 7 direction according to the
difference of the z coordinates of the surfaces between the B-scan and the reference image at
the corresponding (X, v) positton. We can also calculate the shift for each B-scan by means of
the correlation coefficients between the corresponding A-lines in the circular and reference B-
SCAMNS.

The blood vessels can be treated as straight lines in the small arc scan area. The Doppler
angle can be calculated using the following relationship:

cosf = Az =, (5)
Jm-’- + Ay 4+ A2

Where Ax Ay . and Az are the projections of the vessel segment in the scanned area on the X,
Y. and Z axes. By differentiation of Eq. (3) we have

— AxAzd (Ax) — AyAzd (Av) + (Ax® +Ay*)d (Az)

d(cosf) = (A2 + A7 + Az2) 2 ©

In retina imaging, #1s close to 90° and Az << Ax. Ay . As a result, we can see from Eq. (6) the

variation of the Doppler angle 15 more sensitive to the vanation of Az . So that compensation
for eye movement in the z direction 1s the most important in calculating the Doppler angle.

Fig. 2. (a). virtual B-scan extracted from the 3D data at the location of
the reference scan. The red line shows the segmented ILM (inner
limiting membrane) that is used for alignment. (b} The reference scan
image.

Fig. 2 shows the extracted image (virtual B-scan) from the acquired 3D data
corresponding to the positions of the linear reference scan together with the reference scan
image. The immer limiting membrane (ILM) can be extracted by using our segmentation
algorithm for both images. Bv comparing the Z coordinates at the same locations of the
segmented ILM 1n both images, a compensation curve can be generated.
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2.4 Auromatic quantitative blood vessel detection
2.4.1 Automatic detection af lateral coordinates

To calculate the Doppler angle. the coordinates of the blood vessel need to be determuned on
each OCT cross sectional image. Our strategy is to first determine the lateral position and the
diameter of each blood vessel on the cross sectional OCT intensity image and then determine
the depth location of the vessel on the ODT mmage. In an OCT cross sectional image a blood
vessel casts a shadow behind it, which exhibits as a low reflection region m the retinal fundus
reflection graph. However, surface reflections can cause distortions to the blood vessel profile
and add difficulty in blood vessel automatic detection. Other techmques were introduced to
minimize the effect of surface reflection in retinal blood vessel detection [12] Here we used
our previously published method known as the shadowgram [11] to improve the retinal blood
vessel profile and minimze the surface reflection effect. Using this technique we can generate
a high contrast retinal reflection distribution called shadowgraph. where each vessel was
characterized as a low reflection region.

SRS agy
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Fig. 3. Improved blood vessel profile using blood vessel shadewgraph.
{a) Original B-scan image. (b) The B-scan image after the surface layer
was removed. The caleulated findus reflection  distribution
corresponding to the B-scan and the fundus shadowgraph were
superimposed on the images.

The shadowgraph was generated by first remowving the surface lavers of the retinal OCT
image and then summing all the pixel mtensity values along each A-scan. Fig. 3 shows the
original OCT image, the mmage after the surface layer was removed, and the calculated
reflection distributions (the vessel profiles). From the calculated fundus reflections we can see
that not only the wvessel contrast but also the vessel profile was improved by using the
shadowgraph., which promises a more accurate detection of the vessel location and its
diameter.

To extract the lateral coordinates the shadowgraph was first smoothed by using a smooth
filter (Savitzky-Golay, length=3. weighing factor=21 in Matlab). The background was
removed from the smoothed curve by subtracting the low pass filtered data. After
normalization, thresholding according to a predetermined value was applied. The blood vessel
locations and diameters were then deternuned.

2.4.2 Automatic detection of Depth coordinates

Automatically detecting the depth position of a blood vessel is much more challenging than
detecting the lateral coordinates. Various methods may be used on either the intensity image
or the ODT image. We first reported on the successful detection of the depth position of a
blood wessel on an ODT image after the lateral coordmates and vessel diameter were
determined. [6] The same method was used in the current study.

To detect the z coordinate of the center of a blood vessel. comprehensive information
about the blood vessel was used. i.e. the lateral coordinates, the vessel diameter. and the
Doppler shift caused by the blood flow. The basic idea 1s that outside the blood vessel the
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calculated Doppler shift consists of only random noise where inside the vessel the Doppler
shifts are correlated. Accordingly, a circular window filter moving in the z direction along the
detected vessel position can be constructed. The diameter of the circular window should be
equal or less than the diameter of the blood vessel. The filter can be either type of a fimction
that examines the correlation of the values inside the widow. The simplest type of the function
1s averaging.

We used an averaging filter for the detection of the z coordinate of a blood vessel. An
average versus z curve was obfained for each blood vessel. A maximum or nunimum will be
reached. depending on the direction of the blood flow, when the center of the window
comncides with the center of the blood wvessel. Therefore, by locating the maximum or
minimum of the average versus z curve the z coordinates of the center of a blood vessel can
be determined.

Fig. 4 shows an example of the ODT image of a retinal blood vessel in an arc scan around
the optic disc (a), the center of the blood vessel marked according to visual measurement (b),
and the result of the moving circular window filtering. In this case, the location of the
minimum corresponds to the center of the blood vessel We can ses from the figure that the
moving circular window filtering worked well i locating the depth position of the vessel
center.

Fig. 4. Depth coordinate detection by using a circular window averaging.
(a) The criginal ODT image of an arc scan; (b) The blood vessel center
was marked by wvisual measurement; (c) Averaging curve along the
direction of the A-line passing through the center of the blood vessel with
a diameter of 0 pixels. Notice the position of the peak comresponds with
the depth position of the center of the blood vessel.

Upon determination of the coordinates of a blood vessel the Doppler angle can be calculated
by using Eq. (3) The absolute velocity of the blood flow inside the wvessel can then be
calculated. Knowing the absolute average velocity (V,. averaged across the vessel) of the

blood flow and the vessel diameter (d), the blood flow rate (E) can be calculated as

R=% md? /4. (7
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Fig 3 illustrates the procedure for the data processing.
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Fig 3. Hlustration of the procedure for caleulation of the Deppler angle and the blood flow.

3. Results and discussion

Fig. 6. Color fimdus photograph of a normal human eye and the
corresponding OCT fundus image generated from the circular scans
around the optic disc.

The algorithms for detecting the wvessel coordinates and diameters were applied to the
measured data. Fig. 6 shows the re-constructed OCT fundus image from the circular scan
around the optic disc and the corresponding color fundus photograph of a normal eve of a
volunteer. By comparing both images retinal arteries and veins can be recognized on the OCT
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fundus 1mage. The OCT fundus image was used to determine the accuracy of the algorithm
for the detection of the lateral position of the blood vessels. The OCT fundus image registered
well with the fundus photograph. Fig. 7 shows the step-by-step data processing results and the
detected vessel centers and vessel boundaries on the circular OCT and the ODT images.
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Fig. 7. {a). OCT image of a high density circular scan (2192 A-lines)
around the optic disc of a normal human eye; (b). The OCT image after
removal of the surface layers: (c). The original shadowgraph; (d). The
shadowgraph after background correction and normalization; (). the
shadowgraph after threshelding: (f). Fecognized blood wvessel centers
and boundaries are marked on the OCT 1mage; (g). The ODT image for
the same OCT scan; (h). Magnified view of the region marked in (g).
where the calculated blood wessel centers are marked.

To test the accuracy of the algorithm the eves of four normal volunteers were imaged and
analyzed. We define the accuracy for the detection of the lateral coordinates as the percentage

of the number of blood vessels automatically detected to the number of blood vessels detected
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visually on the circular OCT fundus mmage. We achieved 100% accuracy for the eves we have
imaged. The accuracy for the detection of the depth coordinate was defined by comparing the
visually determined blood vessel center on the Doppler image with the center determined by
the algorithm (see Fig. 8 as an example). If the distance between the two centers was less than
half of the radius of the vessel, we define it as a success. For the imaged normal eyes we
achieved an accuracy of 84 4% for all the vessels. For large blood vessels (diameter larger
than 50 pixels) depth positions were detected with an accuracy of 93.3%.

Fig. 8. (a). the detected vessel location and boundaries in an arc scan
image; (b) comparing the automatically detected vessel center (selid
circle) and the visually detected center (open circle) on the ODT image
of a vessel.

The detected blood vessel coordinates contain the effect of eve movement. Before the
vessel coordinates were used for calculation of the Doppler angle eve movement
compensation was applied to the arc scans. After eye movement compensation linear fitting
was used for the x. v, and z coordinates of the blood vessels. The angle of the fitted line m
reference to the Z axis is the calculated Doppler angle. Fig 9 shows the process and results
for eye movement compensation for a blood vessel.

After calculation of the Doppler angle. the absolute blood flow velocity can be calculated.
After the ODT unage was median filtered the flow speed inside the blood vessel was averaged
across the vessel for each time point to get the mean of the flow speed. One artery marked on
Fig 10(a) for a normal eye was studied. The calculated Doppler angle for this vessel 15 87 8°.
The calculated absolute velocity of the blood flow over time is shown in the curve of Fig.
10(b). The blood flow velocity over the time of measurement was calculated to be 30 4+9 5
mumn's (mean and standard deviation). The standard dewviation reflects pulsating behavior of the
artery. The volunteer’'s pulse rate measured separately immediately after the OCT imaging
was 38 pulses/min, which agrees with the velocity calculation i Fig. 10b. The diameter of the
vessel in the measured region 15 109 pm. As a result. the average blood flow in this vessel 1s
17 plimin.

One veimn marked on the fundus photograph shown mn Fig. 11{a) for another normal eve
was also studied. The calculated Doppler angle for this vessel 15 87°. The calculated absolute
flow velocity of the blood flow, averaged across the vessel, 1s shown i the 1 Fig. 11(b). The
averaged blood flow velocity over the time of measurement was calculated to be 16439
mm's (mean and standard deviation). The diameter of the vessel in the measured region 15 51
um. As a result, the average blood flow in this vessel 15 2.01 pl/min.
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Fig. 9. The detected =, v, and z coordinates of the center of a blood
vessel wersus the scan radims r. Linear fitting were used for
compensating variations of the x and y coordinates. The coordinates at
r=1.73 mm are the average of the results of the 58 repeated arc scans.
{(a) x wersus 1; (b) v versus 1; (c) z versus 1 before and after eye
movement compensation. Alse shown in (c) 1s the range of the z
coordinates of the vessel center for the 58 repeated arc scans.

ODT images for the artery and vemn are also shown i Fig. 10 and Fig. 11. Dunng the
alignment for imaging acquisition a real-time ODT image was displayed for the position at
the repeated arc scan. The ODT image for the blood vessel of interest was optinuzed by
adjusting the optical head of the OCT system, which is equivalent to adjusting the Doppler
angle for the specific vessel. When the ODT mmage for one vessel was optimized the quality
of the images for the other vessels also covered by the scan may be deteriorated We speculate
the reason for this deterioration 1s caused by that the Doppler angle was closer to 90°.
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Fig. 10 The test result of an artery for 3 normal human eye. {(a) The

fundus photograph, the cross sectiomal OCT image at the position
marked on the fundus photograph, and the ODT image. (b) The
calculated absolute flow velocity averaged across the vessel area.

The calculated absolute velocity and flow rates for the artery and vein compared well with
results obtamned vsing other technologies [13] The tests of the technique on current limited
number of eyes were successful although more experiments are needed to test the accuracy
and repeatability. Because the Doppler angles of retinal blood vessels are close to 90°, the
error of the calculated absolute blood flow velocity 1s very sensitive to the error of the
calculated Doppler angle As analvzed in section 2 3 the Doppler angle is more sensitive to
the eyve movement mm Z direction than that m X and Y directions, which 15 important
considering that there is also no effective technique in the compensarion for the movements in
the X and Y directions. As a result, 1n our current technique eye movements in the X and Y
directions were corrected only with Iimear fitting.

To test the accuracy of the calculation of the Doppler angle and the blood flow rate we
measured the total flow rate of a vein before and after a bifurcation. Two measurements at the
locations shown m Fig. 12 were taken. For the first measurement we scanned the area that
contained the vein before bifurcation (parent vessel), while in the second measurement we
scanned the area that contained both branches after bifurcation (danghter vessels). The tiume
interval between the two measurements was about 15 minutes, during which the subject kept
the same body position. The two measurements were taken at the same conditions where the
room was kept dark to munimize the outside mnfluence to the blood flow. The results of the
measurements are shown in Table 1. The calculated average blood flow entering the
bifurcation from the two branches was 2. 23 pl/min while the average blood flow leaving the
bifurcation was 2.17 pl/min. The result provided good validation of our technique for the
calculation of the Doppler angle and the blood flow rate. We are planning to build a phantom
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simulating a blood vessel with adjustable 3D orientation and flow rate to further test the
accuracy of our algorithm.
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Fig. 11. The test result of 2 vem for a normal human eye. (a) The fundus
photograph, the OCT cross sectional image at the position marked on the
fundus photograph, and the ODT tmage. (b) The calculated absolute flow
velocity averaged across the vessel arsa.

Fig. 12. Color fundus photograph of a normal human eye with markers
indicating the location of the scan areas. Vessel 1 corresponds to the vemn
before bifurcation, while vessels 2 and 3 represent the vessel branches after
bafurcation.
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Table 1. Calculated parameters of the vessels shownin Fig. 12

Vessel # 1 2 3
Diameter {pim) 103 66 54
Velecity (mum/sec) 43 2 412
Doppler Angle g1.6° a3° 76.3°
Flow (pl‘min) 21.17+0.57 1.65+£0.23 0.58=0.07

4. Conclusion

Doppler angle of retinal blood vessels mcluding arteries and veins were successfully
calculated by using the comprehensive information provided by high speed SD-OCT—
structural mformation from the OCT intensity tmage and speed information from the ODT
image. The lateral coordinates of a blood wvessel can be extracted accurately by using the
technique of blood vessel shadowgram, which not only enhanced contrast of the blood vessel
against the reflecting background but also improved the vessels profile. The depth coordinate
of a blood vessel was calculated by using a moving circular window filter in the ODT image
after the lateral coordinates and the wvessel diameter were extracted. By calculating the
Doppler angle of a blood vessel the absolute blood flow velocity and the blood flow rate and
be calculated. The techmique was successfully tested on refinal arteries and veins for normal
human eyes.
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